

IVD For in Vitro Diagnostic Use CE

Sacace Molecular Genetics FV (G1691A) Leiden SNP-Screen FII Protrombin (G20210A) SNP-Screen MTHFR (C677T) SNP-Screen

Handbook

Real Time PCR kits for detection of Single Nucleotide Polymorphisms (SNPs)

REF see below kits table

NAME Sacace Molecular Genetics

INTRODUCTION

A single nucleotide polymorphism (SNP pronounced "snip") is a DNA polymorphisms at the level of a single nucleotide, a single base mutation in DNA. SNPs are 'conserved' across the genome and represent the most simple form and most common source of genetic polymorphism in the human genome: 90% of all human DNA polymorphisms are associated with SNPs and variation frequency is about 1 every 1000bp in the human genome (Sachidanandam et al.,2001).

The SNPs in the genome can affect gene functions, protein structure or expression and for these reasons they are used as markers in genetic disease studies (Kim & Mishra, 2007).

It's sometimes possible to correlate a SNP with a particular trait or disease: susceptibility to disease may also be described as an 'unfortunate trait' that can be assessed checking if the mutated (unfortunate) polymorphism is carried in both alleles.

SNPs testing can be applied to:

- Diagnostics / risk profiling
- Drug response prediction
- Gene function identification

Several SNPs have been associated to genetic susceptibility to different diseases and disorders like for example:

- Hypertension
- Fibrinolysis
- Myocardial infarction
- Ischemic stroke
- Cancer
- Metabolic disorders

In order to perform SNP genotyping, two specific probes labeled with different dyes are used, the first for the wild type allele and the second for the mutant allele. If the assay results in the emission of only the first fluorescent color, then the individual is homozygous wild type at that locus. If the assay results in the emission of only the second fluorescent color, then the individual is homozygous mutant. And finally, if both fluorescent colors are produced, then the individual is heterozygous.

INTENDED USE

Sacace Molecular Genetics Kits are intended for detection and allelic discrimination of genetic polymorphisms associated with inherited susceptibility to increased risk of disease, or to different response to drugs.

PRINCIPLE OF ASSAY

Sacace Molecular Genetics Kits are qualitative tests that allow the detection by Real Time PCR based on the amplification of the genome specific region using specific primers. In Real Time PCR the amplified product is detected using fluorescent dyes. These dyes are linked to oligonucleotide probes that bind specifically to the amplified product. The real-time monitoring of the fluorescence intensities during the reaction allows the detection of accumulating product without re-opening of the reaction tubes after the PCR run.

MATERIALS PROVIDED

Option No.1: Ready to use 0,2 ml tube format (TXXXX-50-T)

- 60 ready to use 0,2 ml PCR tubes (each PCR tube contains 15 µl of PCR mix)
- **Taq polymerase,** 0,3 ml (1 vial)
- Negative control C-, 0,1 mL (1 vial)
- C+ Homozygous Wild Type (allele 1-1), 50 µL (1 vial)
- C+ Heterozygous (allele 1-2), 50 µL (1 vial)
- C+ Homozygous Mutant (allele 2-2), 50 µL (1 vial)

Contains reagents for 60 tests.

Option No.2: Ready to use 12x8 strip format (TXXXX-96-S)

- **12 x 8 strip ready to use** (each PCR tube contains 15 µl of PCR mix)
- **Taq polymerase,** 0,5 ml (1 vial)
- Negative control C-, 0,1 mL (1 vial)
- C+ Homozygous Wild Type (allele 1-1), 50 µL (1 vial)
- C+ Heterozygous (allele 1-2), 50 µL (1 vial)
- C+ Homozygous Mutant (allele 2-2), 50 µL (1 vial)

Contains reagents for 96 tests.

KITS TABLE

Code	Gene	Polymorphism details	Fluorescence Channel: Substitution
T01101	F5	Arg 506 Gln	HEX: Arg (G) – allele 1
101101	ГЭ	C <u>G</u> A 506 C <u>A</u> A rs6025	FAM: Gln (A) – allele 2
T01102	F2	G 20210 A	HEX: G – allele 1
101102		rs1799963	FAM: A – allele 2
T 04400		Ala 222 Val	HEX: Ala (C) – allele 1
T01103	MTHFR	GCC 222 GTC rs1801133	FAM: Val (T) – allele 2

MATERIALS REQUIRED BUT NOT PROVIDED

Zone 1: sample preparation

- DNA extraction kit
- Biological cabinet
- Desktop microcentrifuge for "eppendorf" type tubes
- Dry heat block
- Vortex mixer
- Pipettes
- Sterile pipette tips with filters
- 1,5 ml polypropylene sterile tubes
- Biohazard waste container
- Refrigerator, Freezer

Zone 2: Real Time amplification

- Real Time Thermal cycler
- Workstation
- Pipettes (adjustable)
- Sterile pipette tips with filters
- Vortex mixer
- Desktop centrifuge with rotor for 1,5/2,0 ml tubes
- Freezer, refrigerator
- Tube racks

STORAGE INSTRUCTIONS

Sacace Molecular Genetics kits must be stored at 2-8°C. The kits can be shipped at 2-8°C and stored as indicated immediately on receipt.

STABILITY

Sacace Molecular Genetics kits are stable up to the expiration date indicated on the kit label. The product will maintain performance through the control date printed on the label. Exposure to light, heat or humidity may affect the shelf life of some of the kit components and should be avoided. Repeated thawing and freezing of these reagents should be avoided, as this may reduce the sensitivity. Components stored under conditions other than those stated on the labels may not perform properly and may adversely affect the assay results.

QUALITY CONTROL

In accordance with Sacace's ISO 13485-Certified Quality Management System, each lot is tested against predetermined specifications to ensure consistent product quality.

WARNINGS AND PRECAUTIONS

The user should always pay attention to the following:

- Use sterile pipette tips with aerosol barriers and use new tip for every procedure.
- Store extracted positive material (samples, controls and amplicons) away from all other reagents and add it to the reaction mix in a separate area.
- Use disposable gloves, laboratory coats and eye protection when handling specimens and reagents. Thoroughly wash hands afterwards.
- Do not eat, drink, smoke, apply cosmetics, or handle contact lenses in laboratory work areas.
- Do not use a kit after its expiration date.
- Dispose of all specimens and unused reagents in accordance with local authorities' regulations.
- Specimens should be considered potentially infectious and handled in a biological cabinet in accordance with appropriate biosafety practices.
- Clean and disinfect all sample or reagent spills using a disinfectant such as 0.5% sodium hypochlorite, or other suitable disinfectant.
- Avoid sample or reagent contact with the skin, eyes, and mucous membranes. If skin, eyes, or mucous membranes come into contact, rinse immediately with water and seek medical advice immediately.
- Material Safety Data Sheets (MSDS) are available on request.
- Use of this product should be limited to personnel trained in the techniques of DNA amplification.
- The laboratory process must be one-directional, it should begin in the Extraction Area and then move to the Amplification and Detection Areas. Do not return samples, equipment and reagents to the area in which the previous step was performed.

PRODUCT USE LIMITATIONS

All reagents may exclusively be used in in vitro diagnostics. Use of this product should be limited to personnel trained in the techniques of DNA amplification (UNI EN ISO 18113-2:2012). Strict compliance with the user manual is required for optimal PCR results. Attention should be paid to expiration dates printed on the box and labels of all components. Do not use a kit after its expiration date.

SAMPLE COLLECTION, STORAGE AND TRANSPORT

Sacace Molecular Genetics Kits can analyze genomic DNA extracted from:

- whole blood collected in EDTA tubes;
- *Buccal swab*: insert the swab into the nuclease-free 1,5 ml tube and add 0,2 ml of Transport medium. Vigorously agitate swabs in medium for 15-20 sec.

Specimens can be stored at +2-8°C for no longer than 24 hours, or freeze at -20°C to -80°C. Transportation of clinical specimens must comply with country, federal, state and local regulations for the transport of etiologic agents.

DNA ISOLATION

Any commercial RNA/DNA isolation kit, if IVD-CE validated for the specimen types indicated herein at the "SAMPLE COLLECTION, STORAGE AND TRANSPORT" paragraph, could be used.

- \Rightarrow Genomic column DNA Express spin column extraction kit (Sacace, REF K-1-1/E)
- \Rightarrow SaMag Blood DNA extraction kit (Sacace, REF SM001);
- \Rightarrow QIAamp DNA Blood mini kit (Qiagen, REF 51104);
- \Rightarrow **DNA-Sorb-A** (Sacace, REF K-1-1/A) for buccal swab;

Please carry out DNA extraction according to the manufacturer's instruction.

PROTOCOL

Sacace Molecular Genetics kits do not include reagents required for sample preparation and DNA extraction. Blood samples and biological materials must be processed by using the recommended kits or those with similar performances of quality and quantity of extracted DNA. Use of blood samples collected in tubes containing heparin is not recommended.

The analysis of the genomic DNA specimens using **Sacace Molecular Genetics** kits includes the following stages:

- 1. Preparing the Real Time PCR;
- 2. Real Time PCR analysis;
- 3. Data analysis with the software of Real Time PCR instrument;
- 4. Results analysis and conclusions.

EXPERIMENTAL PROTOCOL

Total reaction volume: 25 µl

- Prepare the necessary number of ready-to-use PCR tubes (samples + 3 pos controls + 1 1. neg control).
- 2. Spin for 3-5 sec the **Tag polymerase**, mix by pipetting and **add 5 µl** to each PCR tube.
- 3. Add into the corresponding PCR tubes 5.0 µl of extracted DNA from sample:
 - -**DNA** sample

Add into the corresponding PCR tubes 5.0 µl of controls:

- C+ Homozygous Wild Type (allele 1-1) -
- C+ Heterozygous (allele 1-2) -
- C+ Homozygous Mutant (allele 2-2) -
- **Negative Control C-**-
- Spin the tubes for 3–5 seconds to collect the drops. 4.
- 5. Insert the tubes in the Real-time PCR instrument.

Amplification

Create a temperature profile on your instrument as follows:

Ctor	Plate or mod	lular type instru	uments ¹	Rotor type instruments ²			
Step	<i>Temperature,</i> ℃	Time	Cycles	<i>Temperature,</i> ℃	Time	Cycles	
Hold	80	2 min	1	80	2 min	1	
Hold	94	3 min	1	95	3 min	1	
	94	15 s	_	95	10 s	10	
Cycling	64	40 s	5	60	40 s fluorescence detection	40	
	94	15 s					
Cycling 2	64	40 s fluorescence detection	35				

¹ For example, SaCycler-96[™] (Sacace); CFX-96 / iQ5[™] (BioRad); Mx3005P[™] (Agilent); ABI® 7500 Real Time PCR (Applied)*; LightCycler® 96 (Roche). ² For example Rotor-Gene™ 6000/Q (Corbett Research, Qiagen)

* To perform the test with ABI 7500 (Applied) a disposable adapter provided with the kit has to be used. Additional adapters can be purchased separately.

Fluorescence is detected in FAM/Green, JOE/Yellow/HEX fluorescence channels.

DATA ANALYSIS

The fluorescent signal intensity is detected in 2 channels as shown in the table below:

FAM	HEX
Allele 2	Allele 1
(mutant)	(wild type)

<u>Note</u>: Please refer to the "Kits Table" at the beginning of this manual to check the nucleotids substitution for each polymorphism.

Interpretation of results for Rotorgene 6000/Q (Corbett Research, Qiagen):

Principle of interpretation:

- Signal only in allele 1 (Yellow) : homozygous wild type
- Signal only in allele 2 (Green) : homozygous mutated
- Signal in both allele 1 and allele 2 : heterozygous

Click Analysis, click Other, select Allelic Discrimination, select Slope Correct, click Eliminate cycles before / Ignore first and insert value 10. Insert the Threshold and Outlier removal values as in the following table:

Code	Gene	Polymorphism	Channel / allele	Threshold	Slope Correct	Outlier Removal	
T01101 F5		Arg 506 Gln	Yellow: Arg (G)	0.03	on	10%	
T01101	F5	C <u>G</u> A 506 C <u>A</u> A rs6025	Green: Gln (A)	0,03	on	1076	
T01100	F2	G 20210 A rs1799963	Yellow: G	0,03		1 50/	
T01102			Green: A		on	15%	
		Ala 222 Val MTHFR G <u>C</u> C 222 G <u>T</u> C	Yellow: Ala (C)				
T01103	MTHFR		Green: Val (T)	0,03	on	10%	
		rs1801133	Green: T				

NOTE for Rotorgene 6000/Q (Corbett Research, Qiagen): if a Ct value is higher than 37 the sample is considered invalid and must be repeated. If there is no Ct value in both channels the sample is invalid and must be repeated starting from the extraction.

St Genotyping		
Genotype	Reacting Channels	
Wild Type		Cycling A.Yellow 📃 💌
Heterozygous	Cycling A.Green	Cycling A.Yellow
Mutant	Cycling A.Green	
11		

Interpretation of results for CFX-96/iQ5 (Bio-rad):

Principle of interpretation:

- Signal only in allele 1 (channel HEX) : homozygous wild type
- Signal only in allele 2 (channel FAM) : homozygous mutated
- Signal in both allele 1 and allele 2 (channels HEX and FAM) : heterozygous

Code	Gene	Polymorphism	Channel / allele	Crossing Threshold
T01101	F5	Arg 506 Gln CGA 506 CAA	HEX: Arg (G)	100
T01101	FJ	rs6025	FAM: Gln (A)	100
T01100	F2	G 20210 A	HEX: G	100
T01102		rs1799963	FAM: A	100
T01102	MTHFR	Ala 222 Val GCC 222 GTC	HEX: Ala (C)	100
T01103		rs1801133	FAM: Val (T)	100

Set **Baseline Cycles** at 5-15 and **Crossing Threshold** values as in the following table:

NOTE FOR CFX-96/iQ5 (Bio-rad): if a Ct value is higher than 32 the sample is considered invalid and must be repeated. If there is no Ct value in both channels the sample is invalid and must be repeated starting from the extraction.

Interpretation of results for SaCycler-96 (Sacace Biotechnologies):

Principle of interpretation:

- Signal only in allele 1 (channel HEX) : homozygous wild type
- Signal only in allele 2 (channel FAM) : homozygous mutated
- Signal in both allele 1 and allele 2 (channels HEX and FAM) : heterozygous

NOTE: when creating new test for Sacace Molecular Genetics, select "**Analysis of polimorphisms (two probes)**", name "a" on FAM channel and name "b" on HEX channel. Set **Heterozygote dCp < 3,0** and **Homozygote dCp > 6** (see pictures below).

1. Analysis Type:	Analysis of polimorphisms (two probes)	5. Mixture volume	35 ▲ mcL
Method:	dF/dT 👻		
6. Fluorofors:		7. Polimorphisms analysis criterion:	
🥥 Fam 👻 🎱	Hex 👻 🤗 Rox 👻 🗳 Cy5 👻 👄 Cy5	5 🗸	
a 🔻 b	→ is absent → is absent → is absent	t - Heteozygote dCp <	3,0
		Homozygote dCp >	6,0 ×

To analyse results, be sure to select "Analysis of polimorphisms (two probes)" as Analysis type and "Curve Shape (Cp)" as Method.

	Nº	Identificator	R	Test	Tube type	Concentration	∂ Fam) Hex	o Rox	Oy5	Oy5.5	-		
A1	1	Sample_1_f2	0	snp_new		-	ь	а	•	-	-	Analysis type:	Analysis of polimorphisms (two probes)	•
A2	2	Sample_2	0	snp_new		-	ь	а	-	-	-			_
A3	3	Sample_3		snp_new		-	ь	а	-	-	-	Method:	Curve Shape (Cp)	•
A4	4	Sample_4	0	snp_new		-	ь	а	-	-	-			
A5	5	pos 1-1 (wt)		snp_new	C+	-	ь	а	-	-	-			
A6	6	pos 1-2 (het)	0	snp_new	C+	-	ь	а	-	-	-			
A7	7	pos 2-2 (mut)		snp_new	C+	-	ь	а	-	-	-			
A8	8	C	0	snp_new	C-	-	ь	а	-	-	-			

Click on the icon for changing the parameter of data analysis \mathbf{I}_{-} , a new window will show up.

50 A	PCR result:		a 0	0 Š	10	90 %
hreshold value	10	StD at bac	kground pa	t of PCF	R curve	
and the second		shold of the po	sitive result	10		F(Cp)
and a second second second second		old to normaliz	ations data	10	7	F(Cp)
arameters of polimorp	hisms analys	is:				
		heteozygot	e dCp <	3,0	A.	
		homozygot	e dCp >	6,0	*	
	botto top Normalization dat	Criteria to validity result bottom edge/three top edge/thresh	Criteria to validity result bottom edge/threshold of the po- top edge/threshold to normalize Normalization data arameters of polimorphisms analysis: heteozygot	Criteria to validity result bottom edge/threshold of the positive result top edge/threshold to normalizations data	Image: Criteria to validity result 10 bottom edge/threshold of the positive result 10 top edge/threshold to normalizations data 10 Image: Normalization data 10 arameters of polimorphisms analysis: heteozygote dCp < 3,0	 Criteria to validity result bottom edge/threshold of the positive result top edge/threshold to normalizations data 10 2 % Normalization data arameters of polimorphisms analysis: heteozygote dCp < 3,0 2

Set **90%** as *"Criterion of the positive PCR result"*; *"Normalization data"* checkbox must be **deselected.**

Select checkbox "**Criteria to validity result**" and insert between **10-20% F(Cp)** for *"bottom edge/threshold of the positive result*" and insert between **10-20% F(Cp)** for *"top edge/threshold to normalizations data"*, then click "**Apply**":

.

The results will be displayed in the table on the right (see below pictures as reference).

Example of results:

Resu	Results Statistics						
N	Identificator	Polimo	rphism	dCp	Cp Fam	Cp Hex	
A1	Sample_1_f2	а	ь	0,2	19,2	19,1	
A2	Sample_2	ь	ь	>17		17,7	
A3	Sample_3	ь	ь	>16		18,3	
A4	Sample_4	ь	ь	>16		18,8	
A5	K+	ь	ь	>15		19,4	
A6	K+	а	ь	0,1	18,9	19,0	
A7	K+	а	а	>16	18,4		
A8	C	-	-				

D1	Sample_1_mthfr	а	ь	0,1	18,6	18,7
D2	Sample_2	а	а	>18	17,0	
D3	Sample_3	ь	ь	>17		17,5
D4	Sample_4	ь	ь	>16		18,1
D5	K+	ь	ь	>19		15,7
D6	K+	а	ь	0,4	13,9	13,5
D7	K+	а	а	>21	13,0	
D8	C	-	-			

	a =	FAM (mutant, allele2) b = HEX (wild type, allele1)
а	b	= sample eterozygous (both alleles present)
b	b	= sample homozygous wild type (only allele 1 present)
а	а	= sample homozygous mutant (only allele 2 present)

NOTE FOR SaCycler-96 (Sacace Biotechnologies): if a Ct value is higher than 32 the sample is considered invalid and must be repeated. If there is no Ct value in both channels the sample is invalid and must be repeated starting from the extraction.

KEY TO SYMBOLS USED

REF	List Number	\bigwedge	Caution!
LOT	Lot Number	\sum	Contains sufficient for <n> tests</n>
IVD	For <i>in Vitro</i> Diagnostic Use	VER	Version
	Store at	NCA	Negative Control of Amplification
	Manufacturer	NCE	Negative control of Extraction
i	Consult instructions for use	C+	Positive Control of Amplification
\Box	Expiration Date	IC	Internal Control

* SaCycler[™] is a registered trademark of Sacace Biotechnologies
* iQ5[™] is a registered trademark of Bio-Rad Laboratories
* Rotor-Gene[™] Technology is a registered trademark of Qiagen
* MX3005P® is a registered trademark of Agilent Technologies
*ABI® is a registered trademark of Applied Biosystems
* LightCycler® 96 is trademark of Roche

Sacace Biotechnologies Srl via Scalabrini, 44 – 22100 – Como – Italy Tel +390314892927 Fax +390314892926 mail: info@sacace.com web: www.sacace.com

